Nonsymmetric Ornstein-Uhlenbeck semigroup as second quantized operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimates for the Maximal Operator of the Ornstein-uhlenbeck Semigroup

We show pointwise estimates for the maximal operator of the Ornstein-Uhlenbeck semigroup for functions that are integrable with respect to the Gaussian measure. The estimates are used to prove pointwise convergence. The Ornstein-Uhlenbeck semigroup is defined by Ttf(x)= [ k(t,x,y)f(y)dy, Jr" where ,1. \ -"/2m -2f,-«/2 / \e~'x-y\ \ 4 ^ _ ^ D« k(t, x, y) n (1 -e ) exp -■-Z^L, t > 0, x £ R . This ...

متن کامل

L-smoothing for the Ornstein-Uhlenbeck semigroup

Given a probability density, we estimate the rate of decay of the measure of the level sets of its evolutes by the Ornstein-Uhlenbeck semigroup. It is faster than what follows from the preservation of mass and Markov’s inequality.

متن کامل

Isoperimetry and the Ornstein-uhlenbeck Operator

We first survey the relation between the classical isoperimetric problem, the isoperimetric problem for the Gaussian measure, and the Ornstein-Uhlenbeck operator. We then describe a generalization of these results, which was posed by Isaksson and Mossel [10]. Some results on the conjecture of Isaksson and Mossel [7] will then be described. Both probabilistic and analytic methods will be emphasi...

متن کامل

Gaussian measures, Hermite polynomials, and the Ornstein-Uhlenbeck semigroup

Theorem 1 (Kolmogorov’s inequality). Suppose that (Ω,S , P ) is a probability space, that X1, . . . , Xn ∈ L(P ), that E(X1) = 0, . . . , E(Xn) = 0, and that 1Charalambos D. Aliprantis and Kim C. Border, Infinite Dimensional Analysis: A Hitchhikers Guide, third ed., p. 138, Lemma 4.20. 2Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second ed., p. 322, Theorem 10.11.

متن کامل

On the Maximal Function for the Generalized Ornstein-uhlenbeck Semigroup

In this note we consider the maximal function for the generalized Ornstein-Uhlenbeck semigroup in R associated with the generalized Hermite polynomials {Hμ n} and prove that it is weak type (1,1) with respect to dλμ(x) = |x|2μe−|x| 2 dx, for μ > −1/2 as well as bounded on L(dλμ) for p > 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyoto Journal of Mathematics

سال: 1996

ISSN: 2156-2261

DOI: 10.1215/kjm/1250518505